Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier.com/locate/jmr

Communication A frequency-selective REDOR experiment for an SI₂ spin system

Eugene Mihaliuk, Terry Gullion*

Department of Chemistry, West Virginia University, Clark Hall, P.O. Box 6045, Morgantown, WV 26505, USA

ARTICLE INFO

Article history: Received 6 May 2008 Available online 21 May 2008

Keywords: REDOR Frequency-selective

ABSTRACT

A frequency-selective REDOR experiment is described for SI_2 spin systems. The experiment causes the net dipolar dephasing of the S spin to evolve only under the influence of one of the I spins. The experiment is based on a single pair of appropriately phased 90° I-spin pulses, and the I spin causing the S-spin dipolar dephasing is determined by the relative phases between the two 90° pulses. The experiment is demonstrated on a sample of $1^{5}N_{2}$ -L-asparagine.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Rotational-echo, double-resonance (REDOR) is a useful highresolution, magic-angle spinning NMR experiment for measuring heteronuclear dipolar interactions in solids [1,2] The experiment is especially well suited for isolated SI spin pairs, where the possibility of measuring internuclear distances accurately is readily realized. REDOR has been successfully applied to more complex spin systems involving SI_n spin system [3–6], but the data analysis is usually more complicated and model dependent [7]. Several modifications of REDOR have been developed to simplify SI_n and S_mI_n spin systems, including frequency-selective dipolar recoupling (FDR) [8,9], θ -REDOR [10], MSREDOR [11], frequency-selective REDOR (FSR) [12,13] and DANTE-based frequency-selective REDOR (dbFSR) [14,15].

In this communication we introduce a REDOR experiment designed to cause the S spin of the SI₂ spin system to evolve only under the influence of one of the I spins. The resulting dipolar evolution is identical to that of an isolated SI spin pair. The experiment makes use of a single pair of 90° pulses inserted at the midpoint of the dipolar evolution period of the REDOR experiment. The relative phasing between the two 90° pulses determines which I spin causes the net dipolar evolution of the S spin. The experiment requires an isotropic chemical shift difference between the two I spins and the I–I homonuclear dipolar interaction be relatively weak.

2. Discussion

An example of the modified ${}^{13}C-{}^{15}N$ REDOR (S is ${}^{13}C$ and I is ${}^{15}N$) pulse sequence is shown in Fig. 1. The net dipolar evolution

* Corresponding author. Fax: +1 304 293 4904.

E-mail address: terry.gullion@mail.wvu.edu (T. Gullion).

period is eight rotor cycles for the illustrated sequence. The proton channel is not shown, but protons are used to enhance the ¹³C magnetization via cross-polarization (CP) and are decoupled thereafter by a strong rf decoupling field. All ¹³C pulses, aside from the CP contact, are rotor-synchronized 180° pulses. The pulse sequence is made of two traditional REDOR pulse trains separated by a single ¹³C Hahn-echo 180° pulse [16] having the same phase as the CP pulse. Rotor cycles 1-4 and 9-12 make the two REDOR pulse trains with ¹³C 180° pulses at integer multiples of the rotor period, T_r , and ¹⁵N 180° pulses at half-integer multiples of T_r [17,18]. The pair of ¹⁵N 90° pulses centered about the middle of the experiment provides a way to control which of two chemically distinct ¹⁵N spins causes net ¹³C dipolar dephasing. Inspection of the sequence shows that the absence of the two ¹⁵N 90° pulses results in no net dipolar evolution of the ¹³C magnetization, because the Hahn-echo pulse refocuses the two identical REDOR parts of the experiment. Of course, omitting all ¹⁵N pulses also results in no net ¹³C dipolar evolution.

The net dipolar evolution of a ¹³C spin coupled to two ¹⁵N spins is strongly determined by the time, τ , between the two ¹⁵N 90° pulses, the respective phases between the two 90° pulses and the position of the ¹⁵N carrier frequency relative to the two ¹⁵N resonances. These issues will be illustrated using ¹⁵N₂-L-asparagine, where 1141 Hz separates the two ¹⁵N isotropic chemical shifts on our spectrometer. One of the ¹⁵N resonances is set to exact resonance, so the other ¹⁵N resonance is 1141 Hz off-resonance. The experiment can be explained by simply considering the toggling of the ¹⁵N spin states. Recall that the purpose of the REDOR ¹⁵N 180° pulses is to toggle the ¹⁵N spin states $I_z \leftrightarrow -I_z$ synchronously with the sample rotation to generate a non-zero average dipolar interaction that causes net dipolar dephasing of the ¹³C transverse magnetization. Now consider the effect of the 90° pulse pair 90°_{x} - τ -90°_x. The effect of the first 90°_x pulse is to transform $I_z \rightarrow I_v$ for both ¹⁵N spin systems. The time τ is chosen so that the transverse

^{1090-7807/\$ -} see front matter \odot 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jmr.2008.05.012

Fig. 1. The selective REDOR pulse sequence based on a single pair of 90° pulses is shown. Net dipolar dephasing of the ¹³C magnetization is caused by the on-resonance ¹⁵N spin system if the phases ϕ and γ of the two 90° pulses are the same. Net dipolar dephasing of the ¹³C magnetization is caused by the off-resonance ¹⁵N spin system if the phases ϕ and γ of the two 90° pulses are shifted by 180°. Except where indicated all pulses are 180°. The ¹³C Hahn-echo pulse located at the midpoint of the experiment and is shown with the same phase ζ as the cross-polarization pulse.

off-resonance ¹⁵N magnetization precesses 180° relative to the onresonance ¹⁵N magnetization. Hence, just prior to the start of the second 90°_x pulse the on-resonance ¹⁵N spin system is still I_y but the off-resonance ¹⁵N spin system is $-I_y$. Application of the second 90°_x pulse causes $I_y \rightarrow -I_z$ for the on-resonance ¹⁵N spin system and $-I_y \rightarrow I_z$ for the off-resonance ¹⁵N spin system. The net effect, then, of the 90°_x- τ -90°_x is to toggle the on-resonance ¹⁵N spin system from $I_z \leftrightarrow -I_z$ while the off-resonance ¹⁵N spin system experiences no net change in I_z . As a result, only the on-resonance ¹⁵N spin system will cause net dipolar dephasing of the ¹³C magnetization. A nice feature of the experiment is that the off-resonance ¹⁵N spin system can be chosen to cause the net ¹³C dipolar dephasing by simply changing the phase of the second pulse from $x \rightarrow \bar{x}$.

REDOR is performed as a difference experiment. A ¹³C control signal, S, is acquired by omitting all ¹⁵N rf pulses. A dipolar dephased ¹³C signal, S_r, is obtained by application of the ¹⁵N pulse train. The normalized difference signal is $\Delta S/S = 1 - S_r/S$. Experiments were performed on a home-built triple-channel spectrometer operating at a ¹H frequency of 151.39 MHz. ¹³C and ¹⁵N 180° pulse lengths were 10 µs and 10.8 µs, respectively. The REDOR pulse trains used xy-4 or xy-8 phasing [19,20]. The proton decoupling rf field strength was 115 kHz. The sample was spun at 4344 Hz stabilized to ±0.2 Hz by a custom sample spinning rate controller [21]. The time between midpoints of the two 90° pulses is determined by the difference in isotropic chemical shifts, Δv , of the two ¹⁵N resonances, which is 1141 Hz, and set to produce a 180° precession of the off-resonance ¹⁵N transverse magnetization. This time is given by $1/2\Delta v$ and is 438 µs. For the results presented below, the ¹⁵N carrier frequency was set to the ¹⁵N resonance of the N⁸² nitrogen.

Results are shown in Fig. 2 for the 13 C resonance of the C^{β} carbon of ${}^{15}N_2$ -L-asparagine. X-ray diffraction work shows the C^{β} carbon of asparagine is 2.422 Å from the $N^{\delta 2}$ nitrogen and 2.483 Å from the N' nitrogen [22]. The diamonds show the data obtained with the ¹⁵N carrier frequency set to the ¹⁵N resonance of the $N^{\delta 2}$ nitrogen and both 90° pulses having the same phase. Hence, the diamonds represent dephasing of the ¹³C magnetization caused by the ^{15}N spins at the $N^{\delta2}$ position. A fit of the data (using the standard REDOR universal dephasing curve for an isolated spin pair) gives a dipolar coupling of 208 Hz, which corresponds to a C^{β} –N⁶² distance of 2.45 Å. The solid circles are data obtained under the same condition except the phase of the second 90° pulse is shifted by 180° relative to the phase of the first 90° pulse. Consequently, the solid circles represent dephasing of the ¹³C magnetization by the ¹⁵N spins of the N' nitrogen. The fit to the solid circles provides a dipolar coupling of 194 Hz, which gives a $C^{\beta}-N'$ distance of 2.50 Å. Both REDOR determined distances are in excellent agreement with the respective distances determined by X-ray diffrac-

Fig. 2. Data sets for the frequency-selective REDOR experiment and the standard REDOR experiment are shown. The solid lines are simulations of the respective data sets. Asparagine is shown for reference.

tion experiments. For comparison, a standard REDOR experiment that couples the ¹³C spins of the C^β carbon simultaneously to both ¹⁵N spins of asparagine was also performed, and that data is shown as the open circles. A three-spin simulation using the two REDOR-determined dipolar couplings (208 and 194 Hz) and an N'-C^β-N⁸² angle [22] of 123° describes the data very well. Clearly the three-spin REDOR results are very different from both of the selective frequency REDOR data sets.

3. Conclusions

We have shown that the addition of a pair of suitably phased 90° pulses to the REDOR experiment causes an SI₂ spin system to evolve as an SI spin system. The relative phases of the two 90° pulses determines which I spin is responsible for the net dipolar dephasing of the observed S spin. The experiment is easy to implement because it uses ordinary pulses and should be applicable to any spin-1/2 system. The experiment can be easily extended to SI₃ systems, requiring only an additional scaling factor to the observed $\Delta S/S$ values. For S spins coupled to three or more I spins, frequency-selective REDOR experiments based on DANTE and gaussian pulses are more appropriate.

Acknowledgment

This work was supported by NSF Grant CHE-0603697.

References

- [1] T. Gullion, J. Schaefer, J. Magn. Reson. 81 (1989) 196-200.
- [2] T. Gullion, J. Schaefer, in: W.S. Warren (Ed.), Advances in Magnetic Resonance, vol. 13, Academic Press, San Diego, 1989, pp. 57–83.
- [3] J.M. Goetz, J. Schaefer, J. Magn. Reson. 127 (1997) 147-154.
- 4] A.K. Mehta, J. Schaefer, J. Magn. Reson. 163 (2003) 188–191.
- [5] K. Nishimura, A. Naito, S. Tuzi, H. Saito, J. Phys. Chem. B 103 (1999) 8398-8404.
- [6] W. Strojek, M. Kalwei, H. Eckert, J. Phys. Chem. B 108 (2004) 7061-7073.
- [7] T. Gullion, Concepts Magn. Reson. 10 (1998) 277–289.
- [8] A.E. Bennett, L.R. Becerra, R.G. Griffin, J. Chem. Phys. 100 (1994) 812–814.
- [9] A.E. Bennett, C.M. Rienstra, P.T. Lansbury Jr., R.G. Griffin, J. Chem. Phys. 100 (1996) 10289-10299.

- [10] T. Gullion, C. Pennington, Chem. Phys. Lett. 290 (1998) 88–93.
 [11] O. Liivak, D.B. Zax, J. Chem. Phys. 115 (2001) 402–409.
 [12] C.P. Jaroniec, B.A. Tounge, C.M. Rienstra, J. Herzfeld, R.G. Griffin, J. Am. Chem. Soc. 121 (1999) 10237-10238.
- [13] C.P. Jaroniec, B.A. Tounge, J. Herzfeld, R.G. Griffin, J. Am. Chem. Soc. 123 (2001) 3507-3519.
- [14] C.A. Klug, W. Zhu, K. Tasaki, J. Schaefer, Macromolecules 30 (1997) 1734–1740.
 [15] L. Kaustov, S. Kababya, V. Belakhov, T. Baasov, Y. Shoham, A. Schmidt, J. Am. Chem. Soc. 125 (2003) 4662–4669.
- [16] E.L. Hahn, Phys. Rev. 80 (1950) 580-594.
- [17] J.R. Garbow, T. Gullion, Chem. Phys. Lett. 192 (1992) 71–76.
 [18] R. Anderson, T. Gullion, J.M. Joers, M. Shapiro, E.B. Villhauer, H.P. Weber, J. Am. Chem. Soc. 117 (1995) 10546-10550.
- [19] T. Gullion, D.B. Baker, M.S. Conradi, J. Magn. Reson. 89 (1990) 479-484.

- [19] T. Gullion, J.B. Baker, M.S. Colladi, J. Magn. Reson. 85 (1950) 475-484.
 [20] T. Gullion, J. Schaefer, J. Magn. Reson. 92 (1991) 439-442.
 [21] E. Hughes, T. Gullion, Solid State Nuclear Magn. Reson. 26 (2004) 16-21.
 [22] J.J. Verbist, M.S. Lehman, T.F. Koetzle, W.C. Hamilton, Acta Cryst. Sect. B, Cryst. Chem. 28 (1972) 3006-3013.